Факультет наук о материалах, МГУ имени М.В.Ломоносова

Зондовая микроскопия: методы, теория, приложения

Лекция 7. Часть 2

Силовая спектроскопия

О.В. Синицына, Г.Б. Мешков, Я.В. Гиндикин

2 апреля 2018

- Зависимость силы от расстояния в АСМ
- Теоретические модели контакта зонда с образцом
- Силы, действующие между поверхностями
- Техника эксперимента
- Артефакты
- Примеры локального измерения жесткости
- Картирование локальных механических свойств
- Пластическая деформация
- Тонкие пленки
- Силовая спектроскопия единичных молекул

Неоднородность механических свойств

Нанодомены в пленке блоксополимера стирол-бутадиенстирол имеют различную жесткость

Механизм формирования АСМ-изображений:

АСМ и силовая спектроскопия

Атомно-силовая микроскопия

Силовая спектроскопия

Зависимость силы от перемещения

Сила, действующая на зонд со стороны образца, равна силе упругости балки кантилевера

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Контактная задача Герца

Hertz H (1881). J Reine Angew Math 92:156–171 Sneddon IN (1965). Int J Engng Sci 3:47–57

$$\frac{1}{E_{tot}} = \frac{3}{4} \left(\frac{1 - v_t^2}{E_t} + \frac{1 - v_s^2}{E_s} \right)$$

$$a = F^{1/3} \left(\frac{1}{E_{tot}} \cdot \frac{R_t R_s}{R_t + R_s} \right)^{1/3}$$

$$D = F^{2/3} \cdot \left(\frac{1}{E_{tot}^{2}} \cdot \left(\frac{1}{R_t} + \frac{1}{R_s} \right) \right)^{1/3}$$

 $F \sim D^{3/2}$

Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика, том VII, «Наука», 1987

Теория Дерягина-Мюллера-Топорова (ДМТ)

Учитываются силы адгезии (W — работа адгезии), действующие между зондом и образцом вне контактной площадки

$$R = \frac{R_t R_s}{R_t + R_s}$$

$$F = 0; a_0 = \left(\frac{2\pi R^2 W}{E_{tot}}\right)^2$$

$$a=0; F_{adh}=2\pi RW$$

$$a^3 = \frac{R}{E_{tot}} (F + 2\pi RW)$$

–ח	$F + 2\pi RW$	2/3
<i>D</i> –	$E_{tot}\sqrt{R}$	

Derjaguin BV, Müller VM, Toporov YP (1975). J Colloid Interf Sci 53:314–326
 Müller VM, Yushchenko VS, Derjaguin BV (1980). J Colloid Interf Sci 77:91–101
 Müller VM, Derjaguin BV, Toporov YP (1983). Colloids Surf 7:251–259

Теория Джонсона-Кендалла-Робертса (JKR)

- Учитываются только короткодействующие силы адгезии, действующие внутри контактной площадки
- При отводе зонда возникает шейка

$$F = 0; a_0 = \left(\frac{6 \pi R^2 W}{E_{tot}}\right)^{1/3}$$

Разрыв контакта:

F

$$F_{adh} = \frac{3}{2} \pi RW; a_{min} = \frac{a_0}{\sqrt[3]{4}}; D_{min} = -\left(\frac{\pi^2 RW^2}{12 E_{tot}^2}\right)^{1/3}$$
$$a^3 = \frac{R}{E_{tot}} \left(F + 3\pi RW + \sqrt{6\pi RWF} + (3\pi RW)^2\right)$$
$$D = \frac{a^2}{R} - \frac{2}{3} \sqrt{\frac{6\pi Wa}{E_{tot}}}$$

Johnson KL, Kendall K, Roberts AD (1971). Proc R Soc Lond A 324:301–313

Теория Джонсона-Кендалла-Робертса (JKR)

• Теория учитывает гистерезис деформации при нагрузке и разгрузке

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Теория Маги (Maugis)

- Адгезионные силы учитываются в области с радиусом х, включающей контактную площадку
- Деформация образца описывается как функция параметра λ:

Maugis D (1992). J Colloid Interf Sci 150:243–269 Maugis D (1999) Contact, adhesion and rupture of elastic solids. Springer, Berlin

Теория Маги (Maugis)

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Силы, действующие между поверхностями

- Электростатика
- Капиллярные силы
- . Силы Ван-дер-Ваальса
- Возникновение двойного электрического слоя
- Сольватационные силы
- Гидрофобные силы
- Стерические силы

Суммарное Ван-дер-Ваальсово взаимодействие 1-10 нН

Капиллярные силы 10-100 нН

Силы, действующие между атомами:

Ионная связь ~10-7Н

Ковалентная связь ~10-9Н

Силы Ван-дер-Ваальса ~10-11Н

Техника эксперимента. Настройка оптической системы

$$\Delta V = V_1 + V_2 - (V_3 + V_4)$$

 $\delta = \Delta V/\Omega, \delta$ — отклонение кантилевера, Ω — чувствительность

Если К_s>>К_c, δ~Ζ

Типичные поверхности для калибровки Ω пластины кремния, стекло

Пример: Образец Si (E~150 ГПа) Зонд Si₃N₄ (E~310 ГПа), R=25 нм, K_c=40 Н/м δ=100 нм D=3 нм

Техника эксперимента. Жесткость кантилевера

Прямоугольный кантилевер, Е-модуль Юнга, w-ширина, t-толщина,L-длина

$$k = \frac{Ew}{4} \left(\frac{t}{L}\right)^3$$

Material	Young's modulus E (GPa)	Poisson's ratio v
Diamond	900-1050	0.07
Si	130-188	0.28
Si ₃ N ₄	160-310	0.27
W	350	0.28
Ir	530	0.26

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Техника эксперимента. Форма острия

Оценка формы острия с помощью СЭМ или тестовой структуры для АСМ

Использование коллоидных частиц $(SiO_2, Al_2O_3, TiO_2, MgO, Au, полистирол, полиэтилен)$

Пример:

Радиус коллоидной частицы 10µм Радиус АСМ-зонда 10 нм Для обеспечения одинаковой деформации разница в жесткости кантилеверов ~ 30 раз

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Интерференция между отраженными лучами от кантилевера и поверхности приводит к появлению волн на силовых кривых подвода и отвода при отсутствии взаимодействия зонда с поверхностью.

Крип и гистерезис пьезодвигателя.

Артефакты

Артефакты

Радиус зонда 1 µм, Е_{tot} = 9 ГПа, миниострия с радиусом 2 нм, с расстоянием друг от друга 10 нм.

Cohen SR (1992). Ultramicroscopy 42–44:66–72

Пример локального измерения жесткости

Поверхность полистирола закрыли маской и подвергли воздействию воздушной плазмы

Затем без маски выдержали в парах толуола (2 минуты), глубина индентации 600 нм.

Bonaccurso E, Cappella B, Graf K (2006). J Phys Chem B 110:17918–17924

Пример локального измерения жесткости

4 минуты в парах толуола

Bonaccurso E, Cappella B, Graf K (2006). J Phys Chem B 110:17918–17924

Метод максимальной силы

Частота работы 2 КГц, время снятия данных от точки А до точки Е - 0.5 мс При сканировании сила в точке С поддерживается постоянной

Изображение заимствовано из Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. B. Pittenger, N. Erina, Ch. Su

Картирование модуля Юнга

Бактерии E-Coli

Модуль Юнга подложки ~ 50 МПа, в предположении - зонд в форме конуса

Метод максимальной силы, 250 Гц

Массив силовых кривых, 2 Гц

Bruker Application Note #141 Toward Quantitative Nanomechanical Measurements on Live Cells with PeakForce QNM

Картирование локальных механических свойств

Многослойная полимерная пленка

Изображение заимствовано из Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. B. Pittenger, N. Erina, Ch. Su

Пластическая деформация

Полиметилметакрилат. Изображения отпечатков кантилевера, полученные при максимальной силе от 1.2 до 23 µН. Размер изображений 700х700 нм²

Определение предела текучести:

$$l_p = \sqrt{\frac{3F_{\max}}{2\pi\sigma_y}}.$$

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Тонкие пленки

Отслоение от стеклянной подложки поли(н-бутилметакрилата)

Контур построен для эффективной жесткости 0.914 $S_{eff} = K_s / (K_c + K_s)$

B. Cappella. Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer, 2016

Силовая спектроскопия единичных молекул

Молекулы белков:

Характерные удлинения 20-200 нм

Характерные силы 20-600 пН

J. Zlatanova et al. / Progress in Biophysics & Molecular Biology 38 74 (2000) 37-61

1. Оцените радиус контактной площадки и деформацию для кантилевера из нитрида кремния и плоского образца — а) из кремния, б) из полиэтилена, для силы воздействия 1 нН. Радиус острия кантилевера — 10 нм.

Спасибо за внимание!