Факультет наук о материалах, МГУ имени М.В.Ломоносова

Зондовая микроскопия: методы, теория, приложения

Лекция 1.

История зондовой микроскопии и яркие примеры ее применения.

О.В. Синицына, Г.Б. Мешков, Я.В. Гиндикин

19 февраля 2018

История создания СТМ

Герд Бинниг (Gerd Binnig) Германия, 1947 г.

Генрих Рорер (Heinrich Rohrer) Швейцария, 1933-2013 гг.

Фотографии с сайта Нобелевского комитета

Туннельный эффект

В.Л. Миронов. Основы сканирующей зондовой микроскопии. Москва. Техносфера. 2004.

Туннельный эффект – преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия меньше высоты барьера.

Зависимость туннельного тока (*I*) от расстояния между иглой и поверхностью (*ΔZ*):

$$l \sim e^{-k\Delta Z}$$

k – константа затухания
 волновой функции в области
 потенциального барьера.

Токи в СТМ: 1 пА – 10 нА

Январь 1979: заявка на патент на СТМ

Ночь 16 марта 1981: первая четкая экспоненциальная зависимость тока от расстояния

Схема СТМ:

- 1 образец
- 2 игла (сплав Pt/Ir, W)

3 – пьезокерамический сканер (в настоящее время чаще используется трубчатый пьезоэлемент) 4 – система обратной связи (при отклонении величины туннель-ного тока от заданного значения I₀ игла перемещается по Z, пока ток не станет равным I₀)

Реконструкция 7х7 на поверхности Si(111)

Осень 1982: разрешена структура 7х7 на поверхности кремния

G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel.

Phys. Rev. Lett. 1983, 50, 120.

CTM изображение Nanoall-Nanotechnology Blog

Модель К. Такаянаги (К. Takayanagi) Monet.unibas.ch

История изобретения СТМ

1986: Г. Бинниг и Г. Рорер получают Нобелевскую премию по физике (совместно с Эрнстом Руска (Ernst Ruska))

Помощью в техническом воплощении СТМ: Кристоф Гербер и Эдмунд Вайбель

http://www.rosebud.dk/welcome/history

1986, Герд Бинниг (Gerd Binnig), Кельвин Куэйт (Calvin F. Quate), Кристоф Гербер (Christoph Gerber)

Схема первого атомно-силового микроскопа и первого кантилевера. PRL, 1986, 56 (9), 930

Устройство АСМ

Кантилеверы

Размеры (длина 30-800 мкм, толщина 0,5-10 мкм, ширина 10-50 мкм)

Радиус закругления ~ 10 нм

Жесткость (от ~0,01 Н/м до ~100Н/м):

Прямоугольный кантилевер, Е-модуль Юнга, w-ширина, t-толщина,L-длина

$$k = \frac{Ew}{4} \left(\frac{t}{L}\right)^3$$

Атомное разрешение: поверхность графита

Изображение графита: А) СТМ, виден каждый второй атом углерода, В) АСМ PNAS, 2003, 100 (22), 12539

Атомная решетка графита

Один углеродный слой ~ 5 углеродных слоев

E. Stolyarova et al., 2007

Визуализация отдельных молекул

Молекула пентацена на тонком слое изолятора NaCl на Cu(111). Сканирующая туннельная микроскопия и спектроскопия.

J. Repp, G. Meyer, S. M. Stojković, A. Gourdon, and C. Joachim Phys. Rev. Lett. 2005, 94, 026803

Графеновые наноленты на поверхности Au(111) из 6,11-дибром-1,2,3,4-тетрафенилтрифенилена

J. Cai et al. Nature, 2010, 466, 470-473

СТМ углеродных нанотрубок

Наиболее распространенные нанотрубки имеют диаметры 0.9 – 1.4 нм

металлические нанотрубки: **n - m = 3z**

Смена конформаций одиночной молекулы хлорофилла

Хлорофилл-а на Au(111)

Изменение конформации происходило при подаче напряжения > 0.8 В

Violeta lancu et al., 2006

Распределение заряда в молекуле (метод зонда Кельвина)

а

СТМ изображение молекулы нафталоцианина на пленке NaCl (2 монослоя) на Cu(111)

225 mV

Таутомеризация молекулы нафталоцианина F. Mohn , L. Gross, N. Moll and G. Meyer. Nature Nanotechnology 2012

Гетерогенный катализ

Герхард Эртль (Gerhard Ertl), 1936 г. Нобелевская премия 2007 по химии За исследования химических процессов на твердых поверхностях

Фотография с сайта химфака МГУ.

Oxygen atoms adsorbed on Pt (111) after exposure to 2 L O₂ at 165 K

5.3 nm × 5.5 nm

СТМ. Атомы кислорода на Ru(001), 300 К Нобелевская лекция.

Перемещение атомов иглой СТМ

Xe on Ni(110), высота букв 5 нм

D.M. Eigler, E.K. Schweizer. Nature 1990, 344, 524-526

Перемещение атомов иглой СТМ

Структуры выполнены из атомов Fe на поверхности Cu (111)

Crommie, Lutz & Eigler www.almaden.ibm.com/vis/stm/images

Реакция Ульмана с помощью СТМ

Локальное анодное окисление

nm

Схема, показывающая процесс локального анодного окисления

Blister formation during graphite surface oxidation by Hummers' method

Olga V. Sinitsyna, Georgy B. Meshkov, Anastasija V. Grigorieva, Alexander A. Antonov, Inna G. Grigorieva and Igor V. Yaminsky

Зондовая микроскопия в биологии

Автор изображения Галлямов М.О.

Быстрый АСМ: прогулки миозина

Флюоресцентная микроскопия Головки миозина помечены квантовыми точками, излучающими на длине волны 565 нм и 655 нм.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha. Annu. Rev. Biochem. 2008. 77:51–76

Миозин V: шаг 36 нм, переносит РНК, везикулы и органелы по актиновым микрофиламентам. Быстрый АСМ.

N. Kodera, D. Yamamoto, R. Ishikawa & T. Ando. Nature, 2010, 468, 72-77.

АСМ шоколада

http://sayva.ru/

Почему седеет шоколад?

Переход масло какао из формы V в VI после трех циклов нагрева от 20 до 34 °C

S.M. Hodge and D. Rousseau, JAOCS, Vol. 79, no. 11 (2002) 1115-1121

Наномеханика

Двухпроходный режим: магнитно-силовая микроскопия

Иттрий-железистый гранат

www.ntmdt-si.ru

Ближнепольный оптический микроскоп

1,1'-диэтил-2,2'-цианин йодид, выращенный в поливинилсульфатных пленках

Совмещение АСМ и конфокальной микроскопии

Фибробласт

(а) и (б) АСМ
(с) конфокальная микроскопия:
Голубой — ядрышки
Зеленый — актиновые
микрофиламенты
Красный — клатрин
(d) совмещенное изображение

S. M. Flores, J. L. Toca-Herrera. Nanoscale, 2009, 1, 40–49

Кантилеверные сенсоры

http://www.purdue.edu

АСМ покоряет космос

Миссия ROSETTA

2 марта 2004 - 30 сентября 2016

АСМ для исследования микрочастиц пыли с кометы MIDAS

Комета 67P/Churyumov-Gerasimenko 3 августа 2014

Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/U PM/DASP/IDA АСМ частичек пыли с кометы

http://blogs.esa.int/rosetta/2016/08/31/imaging-tiny-comet-dust-in-3d/ Nature 537, 73–75 (01 September 2016)

Спасибо за внимание!